3k^2=19+5k

Simple and best practice solution for 3k^2=19+5k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2=19+5k equation:


Simplifying
3k2 = 19 + 5k

Solving
3k2 = 19 + 5k

Solving for variable 'k'.

Reorder the terms:
-19 + -5k + 3k2 = 19 + 5k + -19 + -5k

Reorder the terms:
-19 + -5k + 3k2 = 19 + -19 + 5k + -5k

Combine like terms: 19 + -19 = 0
-19 + -5k + 3k2 = 0 + 5k + -5k
-19 + -5k + 3k2 = 5k + -5k

Combine like terms: 5k + -5k = 0
-19 + -5k + 3k2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-6.333333333 + -1.666666667k + k2 = 0

Move the constant term to the right:

Add '6.333333333' to each side of the equation.
-6.333333333 + -1.666666667k + 6.333333333 + k2 = 0 + 6.333333333

Reorder the terms:
-6.333333333 + 6.333333333 + -1.666666667k + k2 = 0 + 6.333333333

Combine like terms: -6.333333333 + 6.333333333 = 0.000000000
0.000000000 + -1.666666667k + k2 = 0 + 6.333333333
-1.666666667k + k2 = 0 + 6.333333333

Combine like terms: 0 + 6.333333333 = 6.333333333
-1.666666667k + k2 = 6.333333333

The k term is -1.666666667k.  Take half its coefficient (-0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
-1.666666667k + 0.6944444447 + k2 = 6.333333333 + 0.6944444447

Reorder the terms:
0.6944444447 + -1.666666667k + k2 = 6.333333333 + 0.6944444447

Combine like terms: 6.333333333 + 0.6944444447 = 7.0277777777
0.6944444447 + -1.666666667k + k2 = 7.0277777777

Factor a perfect square on the left side:
(k + -0.8333333335)(k + -0.8333333335) = 7.0277777777

Calculate the square root of the right side: 2.65099562

Break this problem into two subproblems by setting 
(k + -0.8333333335) equal to 2.65099562 and -2.65099562.

Subproblem 1

k + -0.8333333335 = 2.65099562 Simplifying k + -0.8333333335 = 2.65099562 Reorder the terms: -0.8333333335 + k = 2.65099562 Solving -0.8333333335 + k = 2.65099562 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + k = 2.65099562 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + k = 2.65099562 + 0.8333333335 k = 2.65099562 + 0.8333333335 Combine like terms: 2.65099562 + 0.8333333335 = 3.4843289535 k = 3.4843289535 Simplifying k = 3.4843289535

Subproblem 2

k + -0.8333333335 = -2.65099562 Simplifying k + -0.8333333335 = -2.65099562 Reorder the terms: -0.8333333335 + k = -2.65099562 Solving -0.8333333335 + k = -2.65099562 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + k = -2.65099562 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + k = -2.65099562 + 0.8333333335 k = -2.65099562 + 0.8333333335 Combine like terms: -2.65099562 + 0.8333333335 = -1.8176622865 k = -1.8176622865 Simplifying k = -1.8176622865

Solution

The solution to the problem is based on the solutions from the subproblems. k = {3.4843289535, -1.8176622865}

See similar equations:

| 1=0.1x-0.6x-4 | | f(x)=-5x^2+3x+7 | | -136=-17r | | 58+45+y=0 | | 7-2n=8n(-4n) | | 10s=40 | | 3x*x+2*x-1=x^5 | | 28x2/7 | | r-42=-33 | | 1=0.5x-0.6x-4 | | 8x(6+6)= | | 3x*x+2*x-1=sin(x) | | 8-2=5+5w-4w | | 3x*x+2*x-1=0 | | 200+.15x=320 | | 5w-4w+4=5-4 | | 4t^2+17=16t | | p-38=-28 | | 2log(x-2)=log(14-x) | | 49x=-120 | | (30-x)(22-x)(6-x)=3564 | | 2x^4-5x^3+2x^2=0 | | 6x^2=3+3x | | 3a^2+13a-126=0 | | 9n-3-5n=21 | | 0.5(0.2m+0.3)-0.3m=-0.2(0.4m+0.1)-13 | | -x^3+58x^2-972x+396=0 | | y=-10/7x-7 | | 9x-9+3x+3=90 | | 2x^2-16x-80=0 | | 3960-972x+58x^2-x^3=3564 | | x(3-y)=7 |

Equations solver categories